Icarus Student Satellite Project

Student Space System Fabrication Lab (S³FL) University of Michigan, College of Engineering

Propellantless Space Propulsion Using Electrodynamic (ED) Tethers

- Space Tethers interacting with Earth's Magnetic Field and Ionosphere
 - Enables propellantless propulsion
 - capable of saving International Space
 Station > \$1B in reboost costs
 - Currents driven through long (~5km) conducting tether in space generate highly efficient thrust.
- NASA's ProSEDS mission will demonstrate ED tether propulsion in '01
 - Michigan's Space Physics Research Laboratory (SPRL) providing
 - Plasma diagnostics instrument
 - High-Voltage control circuitry
 - Michigan's CoE/SPRL providing
 - Michigan's FIRST student built satellite!
 - Icarus is a small instrumented satellite placed at end of ProSEDS tether.
 - Collects and transmit data for tether and s/c dynamics

Mission Requirements

Endmass Mission Statement

- The Icarus spacecraft will:
 - Serve as an endmass to stabilize the ProSEDS tether
 - Collect and transmit tether dynamics and endmass attitude data
 - Not interfere with the Delta-II or ProSEDS primary mission objectives

Mission Lifetime

- Primary Mission Day 1
 - The endmass is designed to operate with a 100% transmitter duty cycle for four orbits to ensure delivery of the data desired by ProSEDS
- Extended Mission Up to 20 Additional Days On-orbit
 - The endmass is designed to operate at a 20% transmitter duty cycle for up to 21 days, at which time the NTIA licensing agreement requires permanent shutdown

Mission Timeline

Requirements

System Requirements

- Mass
 - 20.4 kg +/- 0.45 kg (including the attachment interface hardware)
- Payload
 - Icarus must contain a GPS unit to measure relative position
 - Icarus must contain a magnetometer to measure endmass attitude
- Transmission
 - The RF link capability must be disabled after 21 days to fulfill NTIA licensing agreement

Functional Requirements

- Self-contained autonomous spacecraft
- Generate and store power for nominal spacecraft operation
- Store instrument data for transmission

System Block Diagram

Structural Layout

The Icarus Satellite

Icarus in Development

Students in Lab working on Icarus - Winter, 2000

Icarus at NASA/MSFC for Vibration Testing - May, 2000

Icarus Project Involvement

- Heavily Student Managed, Designed, and Manufactured
 - Student Project Manager, Business Manager, and Chief Engineer
 - Student Subsystem Teams
 - Post-doc and engineering support for some critical tasks
- Graduate and Undergraduate Students
 - Aero, EE, CompE, ME, ChE, IOE, AOSS, Physics
- Faculty and Staff Engineering Mentorship
 - Faculty Principal Investigator
 - Engineering Project Manager from Space Physics Research Laboratory (SPRL)
 - provided day-to-day oversight
 - Mentor Engineers for Subsystems (e.g. instruments, structures, etc.)
 - Faculty Technology Advisors
- NASA-MSFC
 - Engineering Mentorship, design reviews
 - Environmental Testing

Lessons Learned

- Tremendous Experience for Students
 - Students are come out of the Icarus experience wiser beyond their years
 - Practical skills
 - Teamwork
 - Realism
- NASA achieves
 - Strong out-reach program
 - Potential for additional science at less cost
- Close cooperation with Professional Staff/Faculty essential
 - At times students operate highly independently. Other times, role was more of an apprenticeship. Both are appropriate
- Short tenure of students is a challenge
 - Good mix of Grad and under-grad students essential